EconPapers    
Economics at your fingertips  
 

On the physical interpretation of statistical data from black-box systems

Iddo I. Eliazar and Morrel H. Cohen

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 13, 2924-2939

Abstract: In this paper we explore the physical interpretation of statistical data collected from complex black-box systems. Given the output statistics of a black-box system, and considering a class of relevant Markov dynamics which are physically meaningful, we reverse-engineer the Markov dynamics to obtain an equilibrium distribution that coincides with the output statistics observed. This reverse-engineering scheme provides us with a conceptual physical interpretation of the black-box system investigated. Five specific reverse-engineering methodologies are developed, based on the following dynamics: Langevin, geometric Langevin, diffusion, growth-collapse, and decay-surge. In turn, these methodologies yield physical interpretations of the black-box system in terms of conceptual intrinsic forces, temperatures, and instabilities. The application of these methodologies is exemplified in the context of the distribution of wealth and income in human societies, which are outputs of the complex black-box system called “the economy”.

Keywords: Complex systems; Reverse engineering; Langevin’s equation; Ito’s stochastic differential equations; Growth-collapse evolution; Decay-surge evolution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113001842
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:13:p:2924-2939

DOI: 10.1016/j.physa.2013.02.021

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:13:p:2924-2939