Formulation of the Hellmann–Feynman theorem for the “second choice” version of Tsallis’ thermostatistics
Alexey E. Rastegin
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 1, 103-110
Abstract:
An approach to formulating the Hellmann–Feynman theorem within the “second choice” formalism of non-extensive statistical mechanics is considered. For the state of thermal equilibrium, we derive a relation of Hellmann–Feynman type between the derivative of the non-extensive free energy with respect to the external parameter and the quantum statistical q-average of the derivative of the Hamilton operator. We also give a proper extension for an arbitrary observable commuting with the Hamiltonian. Some reasons for the usefulness of new formulas are discussed.
Keywords: Tsallis’ entropy; Hellmann–Feynman theorem; Non-extensive thermostatistics; Massieu’s potential (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112008035
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:1:p:103-110
DOI: 10.1016/j.physa.2012.08.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().