EconPapers    
Economics at your fingertips  
 

Log-periodic corrections to the Cole–Cole expression in dielectric relaxation

A.A. Khamzin, R.R. Nigmatullin and I.I. Popov

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 1, 136-148

Abstract: A model of the self-similar process of relaxation is given, and a method of derivation of the kinetic equations for the total polarization based on the ideas of fractional kinetics is suggested. The derived kinetic equations contain integro-differential operators having non-integer order. They lead to the Cole–Cole expression for the complex dielectric permittivity. It is shown rigorously that the power-law exponent α in the Cole–Cole expression coincides with the dimension of the mixed space-temporal fractal ensemble. If the discrete scale invariance for the temporal-space structure of the dielectric medium considered becomes important, then the expression for the complex dielectric permittivity contains log-periodic corrections (oscillations) and, hence, it generalizes the conventional Cole–Cole expression. The corrections obtained in this model suggest another way of interpretation and analysis of dielectric spectra for different complex materials.

Keywords: Cole–Cole expression; Fractional derivation; Fractals; Dielectric permittivity; Log-periodic oscillations (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112008047
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:1:p:136-148

DOI: 10.1016/j.physa.2012.08.011

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:136-148