Entropic lattice Boltzmann method for turbulent flow simulations: Boundary conditions
S.S. Chikatamarla and
I.V. Karlin
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 9, 1925-1930
Abstract:
We introduce a new concept of boundary conditions for realization of the lattice Boltzmann simulations of turbulent flows. The key innovation is the use of a universal distribution function for particles, analogous to the Tamm–Mott-Smith solution for the shock wave in the classical Boltzmann kinetic equation. Turbulent channel flow simulations demonstrate that the new boundary enables accurate results even with severely under-resolved grids. Generalization to complex boundary is illustrated with an example of turbulent flow past a circular cylinder.
Keywords: Entropic lattice Boltzmann method (ELBM); Complex boundaries; Turbulent flow simulation (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113000113
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:9:p:1925-1930
DOI: 10.1016/j.physa.2012.12.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().