EconPapers    
Economics at your fingertips  
 

Statistical distribution of bonding distances in a unidimensional solid

Roman Belousov, Paolo De Gregorio, Lamberto Rondoni and Livia Conti

Physica A: Statistical Mechanics and its Applications, 2014, vol. 412, issue C, 19-31

Abstract: We study a Fermi–Pasta–Ulam-like chain with Lennard-Jones potentials to model a unidimensional solid in contact with heat baths at a given temperature. We formulate an explicit analytical expression for the probability density of bonding distances between neighboring particles, which depends on temperature similarly to the distribution of velocities. For a finite number of particles, its validity is verified with high accuracy through molecular dynamics simulations. We also provide a theoretical framework which is consistent with the numerical findings. We give an analytic expression of the mean bond distance and elastic constant in the case of the square-well and harmonic interparticle potentials: we outline the role played by the hard-core repulsion. We also calculate the same quantities in the case of series expansions of Lennard-Jones potential truncated at different, even series power.

Keywords: Probability distribution; Phase space; Bond length; Fermi–Pasta–Ulam chain (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114004713
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:412:y:2014:i:c:p:19-31

DOI: 10.1016/j.physa.2014.06.006

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:19-31