Improved hybrid information filtering based on limited time window
Wen-Jun Song,
Qiang Guo and
Jian-Guo Liu
Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, issue C, 192-197
Abstract:
Adopting the entire collecting information of users, the hybrid information filtering of heat conduction and mass diffusion (HHM) (Zhou et al., 2010) was successfully proposed to solve the apparent diversity–accuracy dilemma. Since the recent behaviors are more effective to capture the users’ potential interests, we present an improved hybrid information filtering of adopting the partial recent information. We expand the time window to generate a series of training sets, each of which is treated as known information to predict the future links proven by the testing set. The experimental results on one benchmark dataset Netflix indicate that by only using approximately 31% recent rating records, the accuracy could be improved by an average of 4.22% and the diversity could be improved by 13.74%. In addition, the performance on the dataset MovieLens could be preserved by considering approximately 60% recent records. Furthermore, we find that the improved algorithm is effective to solve the cold-start problem. This work could improve the information filtering performance and shorten the computational time.
Keywords: Limited time window; Hybrid information filtering; Bipartite network (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114006864
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:416:y:2014:i:c:p:192-197
DOI: 10.1016/j.physa.2014.08.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).