Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena
Serge P. Hoogendoorn,
Femke L.M. van Wageningen-Kessels,
Winnie Daamen and
Dorine C. Duives
Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, issue C, 684-694
Abstract:
The dynamics of pedestrian flows can be captured in a continuum modelling framework. However, compared to vehicular flow, this is a much more challenging task. In particular the integration of flow propagation and path choice are known to be problematic. Furthermore, pedestrian flow is characterised by different self-organised phenomena, such as the formation of dynamic lanes and diagonal stripes, which have not yet been captured in a continuum modelling framework.
Keywords: Pedestrian flow model; Crowd dynamics; Continuum model; Self-organisation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114006347
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:416:y:2014:i:c:p:684-694
DOI: 10.1016/j.physa.2014.07.050
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().