Toward solotronics design in the Wigner formalism
J.M. Sellier and
I. Dimov
Physica A: Statistical Mechanics and its Applications, 2015, vol. 417, issue C, 287-296
Abstract:
The capability of manipulating single dopant atoms in semiconductor materials, with atomic precision, has given birth to a new branch of electronics known as solotronics (solitary dopant optoelectronics). While experiments are advancing rapidly, the theoretical comprehension of quantum phenomena occurring at that scale is relatively basic. Indeed, in this context, simulations come with incredible mathematical challenges. This eventually prevents practical design and optimization of solotronic devices. In this work, we focus our attention on a planar honeycomb structure exploiting single dopants embedded in silicon and study under which conditions it behaves as an electron ballistic channel. To this aim, we apply the time-dependent Wigner Monte Carlo formalism, based on signed particles to simulate and analyze the phenomena occurring in the proposed structure. We show that, by positioning the dopant atoms (phosphorus and boron) in particular planar patterns (honeycomb), it is possible to control the dynamics of a single electron. Finally, by introducing spatial distortions, we can show how the time-dependent electron dynamics is eventually affected. The results confirm that the Wigner Monte Carlo method is an efficient TCAD (Technology Computer Aided Design) tool which can be exploited for the time-dependent simulation of even more realistic situations necessary for the design of active solotronic devices.
Keywords: Wigner equation; Monte Carlo methods; Quantum mechanics; Electronic transport; Single dopant; Solotronics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114008255
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:417:y:2015:i:c:p:287-296
DOI: 10.1016/j.physa.2014.09.057
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().