Novel and simple non-parametric methods of estimating the joint and marginal densities
Moawia Alghalith
Physica A: Statistical Mechanics and its Applications, 2016, vol. 454, issue C, 94-98
Abstract:
We introduce very simple non-parametric methods that overcome key limitations of the existing literature on both the joint and marginal density estimation. In doing so, we do not assume any form of the marginal distribution or joint distribution a priori. Furthermore, our method circumvents the bandwidth selection problems. We compare our method to the kernel density method.
Keywords: Joint density; Marginal density; Distribution; Semi-martingale; Non-parametric density estimation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116002004
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:454:y:2016:i:c:p:94-98
DOI: 10.1016/j.physa.2016.02.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().