From time series to complex networks: The phase space coarse graining
Minggang Wang and
Lixin Tian
Physica A: Statistical Mechanics and its Applications, 2016, vol. 461, issue C, 456-468
Abstract:
In this paper, we present a simple and fast computational method, the phase space coarse graining algorithm that converts a time series into a directed and weighted complex network. The constructed directed and weighted complex network inherits several properties of the series in its structure. Thereby, periodic series convert into regular networks, and random series do so into random networks. Moreover, chaotic series convert into scale-free networks. It is shown that the phase space coarse graining algorithm allows us to distinguish, identify and describe in detail various time series. Finally, we apply the phase space coarse graining algorithm to the practical observations series, international gasoline regular spot price series and identify its dynamic characteristics.
Keywords: Time series; Complex network; Phase space; Coarse graining; Gasoline spot price; Topological structure (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116302965
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:461:y:2016:i:c:p:456-468
DOI: 10.1016/j.physa.2016.06.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().