MST Fitness Index and implicit data narratives: A comparative test on alternative unsupervised algorithms
Massimo Buscema and
Pier Luigi Sacco
Physica A: Statistical Mechanics and its Applications, 2016, vol. 461, issue C, 726-746
Abstract:
In this paper, we introduce a new methodology for the evaluation of alternative algorithms in capturing the deep statistical structure of datasets of different types and nature, called MST Fitness, and based on the notion of Minimum Spanning Tree (MST). We test this methodology on six different databases, some of which artificial and widely used in similar experimentations, and some related to real world phenomena. Our test set consists of eight different algorithms, including some widely known and used, such as Principal Component Analysis, Linear Correlation, or Euclidean Distance. We moreover consider more sophisticated Artificial Neural Network based algorithms, such as the Self-Organizing Map (SOM) and a relatively new algorithm called Auto-Contractive Map (AutoCM). We find that, for our benchmark of datasets, AutoCM performs consistently better than all other algorithms for all of the datasets, and that its global performance is superior to that of the others of several orders of magnitude. It is to be checked in future research if AutoCM can be considered a truly general-purpose algorithm for the analysis of heterogeneous categories of datasets.
Keywords: Auto-Contractive Map (AutoCM); Main MST Fitness; Recursive MST Fitness; Minimum Spanning Tree (MST); Implicit data narratives (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116302473
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:461:y:2016:i:c:p:726-746
DOI: 10.1016/j.physa.2016.05.055
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().