EconPapers    
Economics at your fingertips  
 

Resistance maximization principle for defending networks against virus attack

Angsheng Li, Xiaohui Zhang and Yicheng Pan

Physica A: Statistical Mechanics and its Applications, 2017, vol. 466, issue C, 211-223

Abstract: We investigate the defending of networks against virus attack. We define the resistance of a network to be the maximum number of bits required to determine the code of the module that is accessible from random walk, from which random walk cannot escape. We show that for any network G, R(G)=H1(G)−H2(G), where R(G) is the resistance of G, H1(G) and H2(G) are the one- and two-dimensional structural information of G, respectively, and that resistance maximization is the principle for defending networks against virus attack. By using the theory, we investigate the defending of real world networks and of the networks generated by the preferential attachment and the security models. We show that there exist networks that are defensible by a small number of controllers from cascading failure of any virus attack. Our theory demonstrates that resistance maximization is the principle for defending networks against virus attacks.

Keywords: Network; Virus attack; Security; Resistance of networks; Robustness of networks (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437116306252
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:466:y:2017:i:c:p:211-223

DOI: 10.1016/j.physa.2016.09.009

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:466:y:2017:i:c:p:211-223