Community detection using boundary nodes in complex networks
Mursel Tasgin and
Haluk O. Bingol
Physica A: Statistical Mechanics and its Applications, 2019, vol. 513, issue C, 315-324
Abstract:
We propose a new local community detection algorithm that finds communities by identifying borderlines between them using boundary nodes. Our method performs label propagation for community detection, where nodes decide their labels based on the largest “benefit score” exhibited by their immediate neighbors as an attractor to their communities. We try different metrics and find that using the number of common neighbors as benefit scores leads to better decisions for community structure. The proposed algorithm has a local approach and focuses only on boundary nodes during iterations of label propagation, which eliminates unnecessary steps and shortens the overall execution time. It preserves small communities as well as big ones and can outperform other algorithms in terms of the quality of the identified communities, especially when the community structure is subtle. The algorithm has a distributed nature and can be used on large networks in a parallel fashion.
Keywords: Complex networks; Community detection; Local algorithms; Label propagation; Boundary nodes; Common neighbors (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118311658
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:513:y:2019:i:c:p:315-324
DOI: 10.1016/j.physa.2018.09.044
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().