Bayesian statistical inference for European options with stock liquidity
Rui Gao,
Yaqiong Li and
Lisha Lin
Physica A: Statistical Mechanics and its Applications, 2019, vol. 518, issue C, 312-322
Abstract:
In the paper, the pricing of European options with stock liquidity is discussed. Since the liquidity discount factor leads to an analytically intractable likelihood function, we provide a new perspective to estimate the parameters entering the option pricing models with liquidity. A Bayesian statistical method is used to perform inference on model parameters and the option price. Although imperfect liquidity resulting in an incomplete market, the risk-neutral Esscher transforms can be used to obtain a European option price formula with stock liquidity. With the European option price formula being a prior, the posterior density of the option price is derived by using nonlinear transformation. A Metropolis-within-Gibbs algorithm is implemented to obtain samples from the posterior kernels. An application to S&P 500 index option is illustrated. Numerical experiments indicate that the Bayesian statistical method has its advantage comparing with traditional method in both parameter estimation and option pricing. By comparing with Black–Scholes model, we find that the Bayesian model with stock liquidity is more efficient in pricing options.
Keywords: Option pricing; Stock liquidity; Bayesian statistical method; Metropolis-within-Gibbs algorithm (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118315139
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:518:y:2019:i:c:p:312-322
DOI: 10.1016/j.physa.2018.12.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().