EconPapers    
Economics at your fingertips  
 

Multivariate generalized information entropy of financial time series

Yongping Zhang, Pengjian Shang and Hui Xiong

Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, issue C, 1212-1223

Abstract: In order to explore the complexity of multivariate time series, we propose a novel method: multiscale multivariate weighted fractional entropy (MMWFE). The research results show that MMWFE is able to measure the complexity of multivariate data correctly and reflect more information contained in the time series. In this paper, the reliability of the proposed method is supported by simulations on generated and empirical data. We analyze simulated pink noise and white noise to test the validity of this method, and the result is consistent with the fact that pink noise is more complex than white noise. Meanwhile, MMWFE shows a better robustness. MMWFE is then employed to bivariate stock return and volume to explore the complexity of stock markets. It successfully distinguishes Asia, Europe and Americas markets. Finally, dynamic MMWFE is applied to explore the evolution of complexity for mining more information containing in nonlinear time series.

Keywords: Multivariate; Multiscale; Fractional order generalized entropy; Financial time series (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711930398X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:525:y:2019:i:c:p:1212-1223

DOI: 10.1016/j.physa.2019.04.029

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1212-1223