Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)
M.M. Sarafraz,
I. Tlili,
Zhe Tian,
Mohsen Bakouri and
Mohammad Reza Safaei
Physica A: Statistical Mechanics and its Applications, 2019, vol. 534, issue C
Abstract:
This article presents the results of an experimental research on the thermal efficiency (TE) of an evacuated tube solar collector (ETSC) working with a nano-suspension of carbon nanotubes dispersed in distillated water. The efficacy of filling ratio (FR) of the heat pipes; the tilt angle (TA) of the collector, and the dispersion mass fraction of the carbon nanotubes within the distillated water on the TE of the collector was investigated. A model was developed based on the response surface methodology (RSM) to optimize the operating conditions in order to maximize the TE of the collector. The accuracy of the RSM model was verified with some additional experiments. It was found that the RSM model is able to optimize the TE of a collector with the accuracy of 1.6%. Also, it was found that the presence of carbon nanotubes inside the evaporator of the heat pipes can promote the nucleate boiling mechanism which in turn increased the TE of the solar collector. Also, the optimum filling ratio value and the installation angle were identified which were 0.6 and 55°, respectively. This was ascribed to a trade-off trend identified between the exist region inside the thermosyphon heat pipe and the amount of the vapor transported between the condenser and evaporator units, and also a trade-off between the residence time of the carrying fluid and the gravity effect, respectively.
Keywords: Solar collector; Nanofluid; Response surface methodology; Carbon nanotube; Thermal performance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119312464
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312464
DOI: 10.1016/j.physa.2019.122146
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().