EconPapers    
Economics at your fingertips  
 

An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms

Minqi Jiang, Jiapeng Liu, Lu Zhang and Chunyu Liu

Physica A: Statistical Mechanics and its Applications, 2020, vol. 541, issue C

Abstract: Stock price index is an essential component of financial systems and indicates the economic performance in the national level. Even if a small improvement in its forecasting performance will be highly profitable and meaningful. This manuscript input technical features together with macroeconomic indicators into an improved Stacking framework for predicting the direction of the stock price index in respect of the price prevailing some time earlier, if necessary, a month. Random forest (RF), extremely randomized trees (ERT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM), which pertain to the tree-based algorithms, and recurrent neural networks (RNN), bidirectional RNN, RNN with long short-term memory (LSTM) and gated recurrent unit (GRU) layer, which pertain to the deep learning algorithms, are stacked as base classifiers in the first layer. Cross-validation method is then implemented to iteratively generate the input for the second level classifier in order to prevent overfitting. In the second layer, logistic regression, as well as its regularized version, are employed as meta-classifiers to identify the unique learning pattern of the base classifiers. Empirical results over three major U.S. stock indices indicate that our improved Stacking method outperforms state-of-the-art ensemble learning algorithms and deep learning models, achieving a higher level of accuracy, F-score and AUC value. Besides, another contribution in our research paper is the design of a Lasso (least absolute shrinkage and selection operator) based meta-classifier that is capable of automatically weighting/selecting the optimal base learners for the forecasting task. Our findings provide an integrated Stacking framework in the financial area.

Keywords: Stock index prediction; Tree-based ensemble models; Deep learning; Stacking algorithm; Information fusion (search for similar items in EconPapers)
JEL-codes: C45 G17 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119313093
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119313093

DOI: 10.1016/j.physa.2019.122272

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119313093