Artificial Neural Network based computing model for wind speed prediction: A case study of Coimbatore, Tamil Nadu, India
R Kaja Bantha Navas,
S Prakash and
T Sasipraba
Physica A: Statistical Mechanics and its Applications, 2020, vol. 542, issue C
Abstract:
The two main challenges of predicting the wind speed depend on various atmospheric factors and random variables. This paper explores the possibility of developing a wind speed prediction model using different Artificial Neural Networks (ANNs) and Categorical Regression empirical model which could be used to estimate the wind speed in Coimbatore, Tamil Nadu, India using SPSS software. The proposed Neural Network models are tested on real time wind data and enhanced with statistical capabilities. The objective is to predict accurate wind speed and to perform better in terms of minimization of errors using Multi Layer Perception Neural Network (MLPNN), Radial Basis Function Neural Network (RBFNN) and Categorical Regression (CATREG). Results from the paper have shown good agreement between the estimated and measured values of wind speed. According to the result, it can be concluded that ANN model with MLPNN could produce the acceptable prediction of the wind speed for given on wind direction.
Keywords: Wind speed; Forecasting; Neural Network; Multilayer Perceptron; Radial Basis Function; Categorical Regression (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119318916
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318916
DOI: 10.1016/j.physa.2019.123383
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().