EconPapers    
Economics at your fingertips  
 

Forecasting stock price movements with multiple data sources: Evidence from stock market in China

Zhongbao Zhou, Meng Gao, Qing Liu and Helu Xiao

Physica A: Statistical Mechanics and its Applications, 2020, vol. 542, issue C

Abstract: We employ multiple heterogeneous data sources, including historical transaction data, technical indicators, stock posts, news and Baidu index, to predict the directions of stock price movements. We focus on the distinctive predicting patterns of active and inactive stocks, and we examine the predictive power of support vector machine (SVM) in different levels of activity for a single stock. We construct a total of 14 data source combinations according to the above 5 heterogeneous data sources, and choose three forecasting horizons, namely 1 day, 2 days and 3 days, so that we can investigate the forecast effects of stock price movements in China A-share market under different data source combinations and forecasting horizons. It is concluded that the optimal data source combinations of active and inactive stocks are different. Active stocks achieve the highest accuracy when combining multiple non-traditional data sources, while inactive stocks obtain the highest accuracy when combining traditional data sources with non-traditional data sources. We further divide each stock into inactive periods, active periods and very active periods, and compare the forecast effects of the same stocks in different periods. We conclude that, for most combinations of data sources, the more active the stock is, the more accurate we achieve, which indicates that our approach is more powerful for predicting the price movements of stocks in active and very active periods.

Keywords: Stock price forecast; Multiple data sources; Investor sentiments; Support vector machines (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119318941
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318941

DOI: 10.1016/j.physa.2019.123389

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318941