EconPapers    
Economics at your fingertips  
 

An efficient matrix approach for two-dimensional diffusion and telegraph equations with Dirichlet boundary conditions

Somveer Singh, Vinita Devi, Emran Tohidi and Vineet Kumar Singh

Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C

Abstract: This article provides an efficient matrix approach by using Euler approximation for solving numerically the two-dimensional diffusion and telegraph equations subject to the Dirichlet boundary conditions. First, the main equation is reduced into partial integro-differential equations (PIDEs) and then operational matrices of differentiation and integration of Euler polynomials transform those PIDEs into algebraic generalized Sylvester equations. The inclusion of several test examples confirms the predicted accuracy and effectiveness of the method. Comparison of obtained numerical results is made with some earlier works (Zogheib and Tohidi, 2016, Singh et al., 2018).

Keywords: Two-dimensional diffusion equation; Two-dimensional telegraph equation; Euler polynomials; Operational matrices; Euler matrix method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119321077
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321077

DOI: 10.1016/j.physa.2019.123784

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321077