A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model
M. Hamid,
M. Usman,
R.U. Haq and
W. Wang
Physica A: Statistical Mechanics and its Applications, 2020, vol. 551, issue C
Abstract:
The evolution equations with fractional or variable order derivatives can deliver a proper mathematical modeling to define the transport dynamics and anomalous diffusion in complex dynamical structures. Herein, a hybrid method based on operational matrices of derivative is proposed and successfully applied to explore the solution of mobile–immobile advection–dispersion problem of variable order. The variable order of the model is considered as function of space and time. The operational matrices of derivative named exact and approximate are constructed with the aid of two different approaches and related theorems are available to support the mathematical justification. The error bound and convergence analysis is presented to validate the mathematical formulation of the computational algorithm. A comparative study is enclosed in our investigation which endorses the credibility of the exact operational matrix of derivative. The numerical simulations for various problems are encountered and set of graphs are presented. The numerical examples are endorsing that the proposed mathematical algorithm is computationally effective and efficient tool and one can extend it to other physical problems of fractional or variable order.
Keywords: Chelyshkov polynomials; Convergence and error bound analysis; Operational matrices of derivative; Mobile–immobile advection–dispersion model; Numerical solution (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120300546
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120300546
DOI: 10.1016/j.physa.2020.124227
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().