EconPapers    
Economics at your fingertips  
 

Exploring time-delay-based numerical differentiation using principal component analysis

Hongtao Li, Ersegun Deniz Gedikli and Raed Lubbad

Physica A: Statistical Mechanics and its Applications, 2020, vol. 556, issue C

Abstract: Natural systems, including the dynamics of engineered structures, are often considered complex; hence, engineers employ different statistical methods to understand these systems better. Analyzing these systems usually require accurate derivative estimations for better understanding, i.e. a measured displacement can be used to estimate the forces on a cylindrical structure in water by using its velocity, and acceleration estimations. In this study, we use a nonlinear method based on embedding theory and consider the time-delay coordinates of a signal with a fixed lag time. We propose a new method for estimating the derivatives of the signal via redefining the delay matrix. That is, the original signal is updated with the second principal component of the delay matrix in each derivation. We apply this simple method to both linear and nonlinear systems and show that derivatives of both clean and/or noisy signals can be estimated with sufficient accuracy. By optimizing the required embedding dimension for the best derivative approximation, we find a constant value for the embedding dimension, which illustrates the simplicity of the proposed method. Lastly, we compare the method with some common differentiation techniques.

Keywords: Time-delay-based differentiation; Principal component analysis; Embedding theory (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120304350
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120304350

DOI: 10.1016/j.physa.2020.124839

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120304350