Combined multiplicative–Heston model for stochastic volatility
M. Dashti Moghaddam and
R.A. Serota
Physica A: Statistical Mechanics and its Applications, 2021, vol. 561, issue C
Abstract:
We consider a model of stochastic volatility which combines features of the multiplicative model for large volatilities and of the Heston model for small volatilities. The steady-state distribution in this model is a Beta Prime and is characterized by the power-law behavior at both large and small volatilities. We discuss the reasoning behind using this model as well as consequences for our recent analyses of distributions of stock returns and realized volatility.
Keywords: Volatility; Heston; Multiplicative; Beta Prime; Distribution tails (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120306671
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306671
DOI: 10.1016/j.physa.2020.125263
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().