A new global method for identifying urban rail transit key station during COVID-19: A case study of Beijing, China
Jianlin Jia,
Yanyan Chen,
Yang Wang,
Tongfei Li and
Yongxing Li
Physica A: Statistical Mechanics and its Applications, 2021, vol. 565, issue C
Abstract:
The rapid-developed COVID-19 has been defined as a global emergency by the World Health Organization. Meanwhile, various evidence indicates there is a positive correlation between the transmission and population density, especially in closed and semi-closed space. The urban rail transit, as one of the major mode choices for people to commute in big cities, carries thousands of passengers every day with relatively closed and limited space, which provides favorable conditions for the spread of the virus. If the surrounding area of any station was disrupted under COVID-19, not only the individual line but also the entire urban rail transit network will have the risk to be affected. Therefore, it is necessary to identify and explore the distribution law of key stations during the spreading process of the COVID-19 virus in the urban rail transit network during the COVID-19 pandemic. Based on the spatial distribution of epidemic area and the demand of urban rail transit passengers, we have proposed a construction method of the rail transit network and use the improved shortest path algorithm to determine the route diversity index of each station which indicates its importance in the urban rail transit network. On this basis, we identify the key stations of the Beijing rail transit network to ensure that passengers avoid high-risk stations during the epidemic. The results show that the number of reasonable routes between any two stations is 1 to 5 during the COVID-19 pandemic. Moreover, the routes diversity index of the Beijing rail transit network was 1.235 during the COVID-19 pandemic and 2.2574 in the normal period. According to the reasonable route diversity index, we have identified the key stations of the Beijing rail transit network during the COVID-19, such as Qi-Li-Zhuang station.
Keywords: Rail transit network; Corona Virus Disease 2019; Vulnerability; Route diversity; Shortest path; Key station (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120308761
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308761
DOI: 10.1016/j.physa.2020.125578
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().