EconPapers    
Economics at your fingertips  
 

A novel time-varying FIGARCH model for improving volatility predictions

Xuehui Chen, Hongli Zhu, Xinru Zhang and Lu-Tao Zhao

Physica A: Statistical Mechanics and its Applications, 2022, vol. 589, issue C

Abstract: The FIGARCH model has received wide attention due to its ability to capture the features of volatility long-memory persistence and clustering. The classical FIGARCH model is based on the difference scheme of Grünwald–Letnikov fractional operators. This paper introduces the new class of FIGARCH processes for improving time-varying volatility predictions. Firstly, a novel FIGARCH model based on the Caputo fractional operators (FIGARCH-C model for short) is proposed. Secondly, a quasi-maximum likelihood estimation (QMLE) is used to estimate the parameters of the FIGARCH-C(1, d, 1), the FIGARCH(1, d, 1) and GARCH(1, 1) models. Finally, we apply the three models to Brent crude oil and S&P 500 returns and provide the comparison results of the three models. The results show that the FIGARCH and FIGARCH-C models outperformed the GARCH model in capturing the long memory in volatility. It is also found that the FIGARCH-C model is more sensitive to capture the change in the volatile period.

Keywords: GARCH; FIGARCH; Long memory; Caputo fractional derivative; Brent; S&P500 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121008839
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:589:y:2022:i:c:s0378437121008839

DOI: 10.1016/j.physa.2021.126635

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:589:y:2022:i:c:s0378437121008839