EconPapers    
Economics at your fingertips  
 

Identification of critical stations in a Metro System: A substitute complex network analysis

Athanasios Kopsidas and Konstantinos Kepaptsoglou

Physica A: Statistical Mechanics and its Applications, 2022, vol. 596, issue C

Abstract: Metro systems are critical public transport elements in several metropolitan areas around the world. Unexpected disruptions may undermine service provision of metro systems, and thus addressing their negative impacts is of primary importance. A first step towards developing mitigation measures involves the identification of those critical metro stations, whose operation must be preserved. Complex Network Theory (CNT) provides valuable methodological tools for this purpose, as a topological analysis based on centrality measures combined with real-world spatiotemporal data can be used for critical station identification. The objective of this paper is to develop a measure for evaluating metro station criticality based on CNT, considering substitute services during a disruption. A substitute network is defined as the network consisting of the metro stations as nodes and all alternative public transport routes potentially serving those stations outside the metro system, as edges. The form of the substitute network depends on a pre-selected service level. Two graphs are constructed, the metro and the substitute, using an L-space and a P-space representation, respectively. A combination of centrality measures of both networks is utilized for evaluating the stations’ criticality. The methodology proposed is applied to a real-world metro system, that of Athens, Greece. A sensitivity analysis is conducted suggesting that the proposed measures manage to capture the tradeoff between centrality and availability of alternatives, considering a station’s topological criticality. On top of that, the criticality measure seems to be robust against changes at service levels, but sensitive enough, so that it can be adaptable to each operator’s needs. The methodology proposed can be utilized for identifying critical metro stations a priori and thus achieving a more efficient planning, considering metro disruptions.

Keywords: Metro network; Complex network; Critical stations; Disruptions; Substitute network; Public transport vulnerability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122001479
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001479

DOI: 10.1016/j.physa.2022.127123

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001479