EconPapers    
Economics at your fingertips  
 

Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition

Jung-Hoon Cho, Dong-Kyu Kim and Eui-Jin Kim

Physica A: Statistical Mechanics and its Applications, 2022, vol. 600, issue C

Abstract: The global spread of the coronavirus disease 2019 (COVID-19) pandemic has affected the world in many ways. Due to the communicable nature of the disease, it is difficult to investigate the causal reason for the epidemic’s spread sufficiently. This study comprehensively investigates the causal relationship between the spread of COVID-19 and mobility level on a multi time-scale and its influencing factors, by using ensemble empirical mode decomposition (EEMD) and the causal decomposition approach. Linear regression analysis investigates the significance and importance of the influential factors on the intrastate and interstate causal strength. The results of an EEMD analysis indicate that the mid-term and long-term domain portrays the macroscopic component of the states’ mobility level and COVID-19 cases, which represents overall intrinsic characteristics. In particular, the mobility level is highly associated with the long-term variations of COVID-19 cases rather than short-term variations. Intrastate causality analysis identifies the significant effects of median age and political orientation on the causal strength at a specific time-scale, and some of them cannot be identified from the existing method. Interstate causality results show a negative association with the interstate distance and the positive one with the airline traffic in the long-term domain. Clustering analysis confirms that the states with the higher the gross domestic product and the more politically democratic tend to more adhere to social distancing. The findings of this study can provide practical implications to the policymakers that whether the social distancing policies are effectively working or not should be monitored by long-term trends of COVID-19 cases rather than short-term.

Keywords: COVID-19; Mobility; Ensemble empirical mode decomposition; Causal decomposition; Multi-scale causality analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122003521
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003521

DOI: 10.1016/j.physa.2022.127488

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:600:y:2022:i:c:s0378437122003521