EconPapers    
Economics at your fingertips  
 

Modeling the resilience of social networks to lockdowns regarding the dynamics of meetings

Bertrand Jayles, Siew Ann Cheong and Hans J. Herrmann

Physica A: Statistical Mechanics and its Applications, 2022, vol. 602, issue C

Abstract: Modern societies are facing more numerous and diverse hazards than ever before, and at an ever-increasing pace. One way to face such catastrophes and dampen their potential harm is to enhance the resilience of social systems. Achieving such a goal requires a better understanding of the mechanisms underlying social resilience. We tackle this issue by simulating dynamic social networks based on the Jin–Girvan–Newman model, and investigate how quickly such networks recover after a lockdown. We first find that the recovery time increases with the strictness of the lockdown, but quickly saturates. Next, we study how the recovery time depends on characteristics of the network. The recovery time is independent of the network size, decreases fast with the rate of random meetings (inverse dependence), and increases with the rate of meeting break-ups. The dependence of the recovery time on the rate of social meetings depends on the maximum number of meetings occurring per time step. Our results suggest that more open, trustful and cohesive communities are more resilient.

Keywords: Social resilience; Lockdown; Covid-19; Social networks; Modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122004204
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:602:y:2022:i:c:s0378437122004204

DOI: 10.1016/j.physa.2022.127618

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:602:y:2022:i:c:s0378437122004204