From rough to multifractal volatility: The log S-fBM model
Peng Wu,
Jean-François Muzy and
Emmanuel Bacry
Physica A: Statistical Mechanics and its Applications, 2022, vol. 604, issue C
Abstract:
We introduce a family of random measures MH,T(dt), namely log S-fBM, such that, for H>0, MH,T(dt)=eωH,T(t)dt where ωH,T(t) is a Gaussian process that can be considered as a stationary version of an H-fractional Brownian motion. Moreover, when H→0, one has MH,T(dt)→M˜T(dt) (in the weak sense) where M˜T(dt) is the celebrated log-normal multifractal random measure (MRM). Thus, this model allows us to consider, within the same framework, the two popular classes of multifractal (H=0) and rough volatility (0Keywords: Rough volatility; Multifractal volatility; Fractional Brownian motion; GMM estimation; Intermittency coefficient (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122005866
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122005866
DOI: 10.1016/j.physa.2022.127919
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().