EconPapers    
Economics at your fingertips  
 

A traffic state recognition model based on feature map and deep learning

Chun Wang, Weihua Zhang, Cong Wu, Heng Hu, Heng Ding and Wenjia Zhu

Physica A: Statistical Mechanics and its Applications, 2022, vol. 607, issue C

Abstract: Real-time and accurate traffic state identification can provide reference for urban traffic control and guidance. Due to the randomness and complexity of traffic flow, it is difficult to identify the traffic state accurately. The existing researches mainly adopted traffic state feature vectors and machine learning to identify the traffic state. Few studies attempted to use the feature map and deep learning for traffic state recognition. Therefore, this paper proposes a traffic state recognition model based on the traffic state feature map and deep learning. The feature map is a chromatogram form of digital traffic state feature vector. And the deep learning has strong predictive performance in image identification. In the model, the road traffic state feature vector is extracted from the vehicle trajectory data, and the Gram Angle Field (GAF) is adopted to transform the feature vector into feature map. Then, the deep learning algorithm is utilized in traffic state offline classification and online recognition. In the offline training phase, the historical vehicle trajectory data and the DeepCluster algorithm are used to establish the mapping relationship between the feature maps and the traffic states. In the online identification stage, the real-time vehicle trajectory data and CoAtNet algorithm are utilized to identify the current traffic state. In experiments, the proposed model is compared with the Convolutional Neural Network (CNN), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) models using the open vehicle trajectory data of Shanghai North Cross Channel. The results showed that the proposed model achieved the best performance with the accuracy of 92.06% and could provide support for road traffic control and guidance.

Keywords: Convolutional Neural Network; Deep clustering; Traffic state classification; Traffic state recognition; Vehicle trajectory data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122007567
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007567

DOI: 10.1016/j.physa.2022.128198

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007567