EconPapers    
Economics at your fingertips  
 

A simple scalable linear time algorithm for horizontal visibility graphs

Jonas Schmidt and Daniel Köhne

Physica A: Statistical Mechanics and its Applications, 2023, vol. 616, issue C

Abstract: Horizontal Visibility Graphs establish a connection between time series and complex networks. As a feature, they have shown strong results in time series classification. For real-world applications, algorithms for computing HVGs are necessary that work efficiently on streamed data, that can be parallelized, and whose runtime is independent of the type of time series. Our proposed algorithm extends the fast horizontal visibility algorithm of Zhu et al. satisfying all these desirable properties. The extended version stays worst-case in O(n), works additionally efficiently on streamed data, and becomes parallelizable. Contrary to recent publications, it does not require a complex data structure. This approach enables the computation of HVGs with millions of vertices in a short period, opening up new application areas of HVGs for time series generated batch-wise or resulting from measurements with a high sampling rate.

Keywords: Horizontal visibility graphs; Graph algorithms; Runtime; Time complexity; Time series; Complex networks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123001565
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001565

DOI: 10.1016/j.physa.2023.128601

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:616:y:2023:i:c:s0378437123001565