EconPapers    
Economics at your fingertips  
 

Novel soliton solution of (3+1)-dimensional perturbed Burgers equation

S.-F. Wang

Physica A: Statistical Mechanics and its Applications, 2023, vol. 622, issue C

Abstract: By using homotopic mapping method, a functional is first introduced to construct the iterative relation of the equation, and the approximate expansion on the soliton solution of the corresponding equation is presented. The perturbation solution of the perturbed Burgers equation (PBE) is derived. In addition, the nested breather and bright–dark solitons are constructed by using auxiliary functions and the local excitation structure of the solution are considered This proposed method overcomes the limitation of classical variational iterative methods to find Lagrange factors for PDEs and can quickly approximate the exact solution of the perturbed equation. This method is simple and effective, and it has a wide range of application prospects.

Keywords: Perturbed burgers equation; Homotopic mapping method; Approximate solution; Local structure (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437123003631
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123003631

DOI: 10.1016/j.physa.2023.128808

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123003631