A new high-precision numerical method for solving the HIV infection model of CD4(+) cells
Jilong He
Physica A: Statistical Mechanics and its Applications, 2024, vol. 653, issue C
Abstract:
This paper proposes a new method called the “Special Neural Network” to solve the HIV infection model of CD4(+) cells using a novel approximation approach. Unlike traditional methods that involve constructing loss functions and performing inverse matrix operations, our method discretizes the differential equations at configuration points, combines them, and transforms the system into a set of nonlinear equations. Parameters in the neural network are then iteratively solved using optimization to obtain an approximate solution. Additionally, when using the neural network as an approximate solution to the differential equations, we provide a form that satisfies the initial conditions through construction, eliminating the need to handle initial conditions during the solving process and thus streamlining the method. Finally, by comparing with other numerical methods using two sets of models and parameters, the Special Neural Network achieves high precision results and further demonstrates the advantages of our approach.
Keywords: Special neural network; HIV infection modeling; System of nonlinear differential equations; Trial function; Iterative optimization; Numerical simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437124005995
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:653:y:2024:i:c:s0378437124005995
DOI: 10.1016/j.physa.2024.130090
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().