EconPapers    
Economics at your fingertips  
 

A carbon market sensitive optimization model for integrated forward–reverse logistics

Alok Choudhary, Sagar Sarkar, Srikar Settur and M.K. Tiwari

International Journal of Production Economics, 2015, vol. 164, issue C, 433-444

Abstract: Globalized supply chains, volatile energy and material prices, increased carbon regulations and competitive marketing pressure for environmental sustainability are driving supply chain decision makers to reduce carbon emissions. Enterprises face the necessity and the challenge of implementing strategies to reduce their supply chain environmental impact in order to remain competitive. One of the most important strategic issues in this context is the configuration of the logistics network. The decision concerning the design of an optimal network of the supply chain plays a vital role in determining the total carbon footprint across the supply chain and also the total cost. Therefore, the logistics network should be designed in a way that it could reduce both the cost and the carbon footprint across the supply chain. In this context, this research proposes a quantitative optimization model for integrated forward–reverse logistics with carbon-footprint considerations, by integrating the carbon emission into a quantitative operational decision-making model with regard to facility layout decisions. The proposed research incorporates carbon emission parameters with various decision variables and modifies traditional integrated forward/reverse logistics model into decision-making quantitative operational model, minimizing both the total cost and the carbon footprint. The proposed model investigates the extent to which carbon reduction requirements can be addressed under a particular set of parameters such as customer demand, rate of return of products etc., by selecting proper policy as an alternative to the costly investment in carbon-reducing technologies. To solve the quantitative model, this research implements a modified and efficient forest data structure to derive the optimal network configuration, minimizing both the cost and the total carbon footprint of the network. A comparative analysis shows the outperformance of the proposed approach over the conventional Genetic Algorithm (GA) for large problem sizes.

Keywords: Supply chain; Carbon footprints; Carbon tax; Carbon cap; Carbon cap-and-trade; Carbon emissions; Forest data structure algorithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527314002734
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:164:y:2015:i:c:p:433-444

DOI: 10.1016/j.ijpe.2014.08.015

Access Statistics for this article

International Journal of Production Economics is currently edited by Stefan Minner

More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:proeco:v:164:y:2015:i:c:p:433-444