Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0
Yi-Ting Chen,
Edward Sun,
Ming-Feng Chang and
Yi-Bing Lin
International Journal of Production Economics, 2021, vol. 238, issue C
Abstract:
When studying the vehicle routing problem, especially for on-time arrivals, the determination of travel time plays a decisive role in the optimization of logistics companies. Traffic Internet of Things (IoT) connects ubiquitous devices and collects data from various channels like traffic cameras, vehicle detectors, GPS, sensors, etc. that can be used to analyze real-time traffic status and eventually increase the efficiency of logistics management for Logistics 4.0. However, big IoT data contain joint features that interact non-linearly and complicatedly, thus increasing the stochastic nature and difficulty of determining travel time on real-time basis. This research proposes a novel method (named the gradient boosting partitioned regression tree model) to forecast travel time based on big data collected from the industrial IoT infrastructure. The proposed method separates the global regression tree model based on the gradient boosting decision tree into several partitions to capture the time-varying features simultaneously – that is, to subdivide the non-linearity into fragments and to characterize the feature interactions in a manageable way with recursive partitions. We illustrate several analytical properties with manageable advantages in terms of big data analytics of the proposed method and apply it to real traffic IoT data. Findings of this research show that the proposed method performs successfully at enhancing the predictive accuracy of travel time after empirically comparing it with other computational methods.
Keywords: Intelligent transportation; Big data; Internet of things (IoT); Machine learning; Predictive analytics; Logistics 4.0 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S092552732100133X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:238:y:2021:i:c:s092552732100133x
DOI: 10.1016/j.ijpe.2021.108157
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().