EconPapers    
Economics at your fingertips  
 

Lifecycle forecast for consumer technology products with limited sales data

Xishu Li, Ying Yin, David Vergara Manrique and Thomas Bäck

International Journal of Production Economics, 2021, vol. 239, issue C

Abstract: Early lifecycle demand forecast is critical to consumer technology products with a fast innovation speed, as firms which compete on these products focus on timely responding to market changes through new product development and efficient product diffusion, rather than sustaining product sales. The challenge for obtaining an accurate long-range forecast is that sales volumes at the early lifecycle stages are small, which limits the forecast accuracy. We propose a two-step lifecycle forecast approach for consumer technology products with limited sales data. First, we segment products based on market and clustering. Second, we apply the Bass model to aggregated products in a group using the average periodic sales of all products in the group and then use the forecast for related new products. We validate our approach using a dataset collected from Philips Netherlands, which contains consumer healthcare products sold in US and China over an 8-year timespan. The results suggest that for forecasting the lifecycle of a new product, models based on aggregated products generally perform better than models based on an individual product. It highlights the value of data aggregation in product lifecycle forecasts. Clustering is also useful for improving the forecast accuracy: when aggregation is done using sufficient product sales data, the aggregated model based on products with which the new product has the most sales pattern similarities could provide a more accurate forecast than other aggregated models. Based on our results, we provide a practical guideline to firms for obtaining an accurate early product lifecycle forecast.

Keywords: Consumer technology products; Product lifeclcye forecast; Clustering-based data aggregation; Bass model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527321001821
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:239:y:2021:i:c:s0925527321001821

DOI: 10.1016/j.ijpe.2021.108206

Access Statistics for this article

International Journal of Production Economics is currently edited by Stefan Minner

More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:proeco:v:239:y:2021:i:c:s0925527321001821