Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system
Thilini Ranasinghe,
Chanaka D. Senanayake and
Eric H. Grosse
International Journal of Production Economics, 2024, vol. 267, issue C
Abstract:
Production systems in industries are undergoing transformative changes, with the rise of Industry 4.0 technologies amplifying the complexity of manual and semi-automated workstations, necessitating advanced training and adaptability from human workers. Human workers, due to their unique blend of cognitive and motor skills, thus flexibility, are indispensable and will continue to play a pivotal role. Because of their unique experiences and attributes, they inherently exhibit variability in their processing times and learning rates, which complicates frequent production ramp-ups. Recognizing the lack of comprehensive models that simultaneously account for stochastic processing times and heterogeneous learning during production ramp-ups, this study aims to bridge this gap. We developed an analytical model of a two-worker production system with an intermediate buffer by focusing on worker learning curves, stochastic processing times, and learning heterogeneity. Through an illustrative case, we derived insights into the performance of such systems, specifically in terms of measures including the mean throughput time of a batch, mean waiting time of a part in the buffer, mean idle time of workers, work-in-progress distribution, and buffer usage during the production run. We found that deterministic learning models can significantly underestimate the throughput times, and even consistent average learning rates can lead to variable throughput times based on the learning patterns. Our findings emphasize the need for production managers to consider these factors for realistic and effective production planning, underscoring the novelty of our approach in addressing these intricate dynamics to improve not only system performance, but also worker well-being.
Keywords: Stochastic learning; Heterogeneous learning rates; Two-workstation system; Throughput time; Buffer (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527323003080
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:267:y:2024:i:c:s0925527323003080
DOI: 10.1016/j.ijpe.2023.109076
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().