A generalised seasonality test and applications for cryptocurrency and stock market seasonality
Savva Shanaev () and
Binam Ghimire
The Quarterly Review of Economics and Finance, 2022, vol. 86, issue C, 172-185
Abstract:
This study develops a novel generalised seasonality test that utilises sequential dummy variable regressions for seasonality periodicity equal to prime numbers. It allows to test for existence of any seasonal patterns against the broad null hypothesis of no seasonality and to isolate most prominent seasonal cycles while using harmonic mean p-values to control for multiple testing. The proposed test has numerous applications in time series analysis. As an example, it is applied to identify seasonal patterns in 76 national stock markets and 772 cryptocurrency markets to detect trading cycles, determine their length, and test the weak-form efficient market hypothesis. Cryptocurrency markets are shown to be less efficient than national stock markets, with predominantly irregular seasonality periodicity that cannot be reduced to conventional weekly, monthly, or annual cycles.
Keywords: Cryptocurrency; Market efficiency; Seasonality; Seasonality test (search for similar items in EconPapers)
JEL-codes: C22 C58 G14 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062976922000801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:quaeco:v:86:y:2022:i:c:p:172-185
DOI: 10.1016/j.qref.2022.07.002
Access Statistics for this article
The Quarterly Review of Economics and Finance is currently edited by R. J. Arnould and J. E. Finnerty
More articles in The Quarterly Review of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().