Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand
Siamak Alizadeh and
Srinivas Sriramula
Reliability Engineering and System Safety, 2018, vol. 172, issue C, 129-150
Abstract:
Common Cause Failures (CCFs) can compromise reliability performance of safety related systems and hence configurations with identical redundant units receive special attention in many industries, including in automotive, aviation and process applications. This paper introduces a new reliability model for redundant safety related systems using Markov analysis technique. The proposed model entails process demand in conjunction with CCF and established system failure modes such as dangerous undetected failures for the first time and evaluates their impact on the reliability performance of the system. The reliability of the safety related systems is measured using the Probability of Failure on Demand (PFD) for low demand systems. The safety performance of the system is also appraised using Hazardous Event Frequency (HEF) to quantify the frequency of system entering a hazardous state that will lead to an accident if the situation is not controlled accordingly. The accuracy of the proposed Markov model is verified for a case study of flammable liquid storage tank overpressure protection system. It is demonstrated that the proposed approach provides sufficiently robust results for all demand rates, demand durations, dangerous undetected and CCF frequencies and associated repair rates for redundant safety related systems utilised in low demand mode of operation.
Keywords: Markov chains; Safety instrumented systems; Safety related systems; Common cause failure; Process demand; Hazardous event frequency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017302909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:172:y:2018:i:c:p:129-150
DOI: 10.1016/j.ress.2017.12.011
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).