EconPapers    
Economics at your fingertips  
 

An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search

Behrooz Keshtegar and Subrata Chakraborty

Reliability Engineering and System Safety, 2018, vol. 172, issue C, 195-206

Abstract: The robustness of iterative formula as well as its computational efficiency is the essential characteristic of interest for effective reliability analysis of structures by first order reliability method (FORM). A robust and efficient iterative algorithm termed as finite-based Armijo search direction (FAL) method is proposed in the present study for FORM-based structural reliability analysis. A finite-step size is proposed using the Armijo rule and sufficient descent condition to achieve the stabilization of the FORM algorithm. The FAL is adaptively adjusted based on the information obtained from the iterative algorithm at each iteration and Armijo rule. The robustness and efficiency of the proposed FAL method is elucidated using several problems. The results obtained by the proposed method are compared with various existing reliability methods based on steepest descent search direction. The results of the numerical study indicate that the FAL approach is more robust and efficient than the other existing FORM schemes and improves the robustness of FORM formula. Thus, the FAL can be successfully implemented as a robust FORM-based iterative reliability analysis procedure.

Keywords: Reliability analysis; First order reliability method; Robustness; Finite-based Armijo search direction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017307561
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:172:y:2018:i:c:p:195-206

DOI: 10.1016/j.ress.2017.12.014

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:195-206