EconPapers    
Economics at your fingertips  
 

Reliability analysis of multi-state system with three-state components and its application to wind energy

Serkan Eryilmaz

Reliability Engineering and System Safety, 2018, vol. 172, issue C, 58-63

Abstract: In most real life situations, the system’s components contribute differently in different performance levels. Such a situation can be modeled by systems with multi-state components having more than one working status, e.g. perfect functioning, and partial working. In this paper, a multi-state system that consists of two types of three-state components is defined and studied. An explicit formula for the probability that the performance of the system is at least a given level is obtained for the most general case when the components are statistically dependent. The model is applied to evaluate the wind power system that consists of two wind plants in different regions. An optimization problem is formulated to find the optimal number of wind turbines that must be installed in the wind plants by minimizing the total cost under specific power production.

Keywords: Multi-state systems; Weighted components; Wind speed; Wind power modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017305410
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:172:y:2018:i:c:p:58-63

DOI: 10.1016/j.ress.2017.12.008

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:58-63