EconPapers    
Economics at your fingertips  
 

Integrating entropy theory and cospanning tree technique for redundancy analysis of water distribution networks

Seyed Ashkan Zarghami, Indra Gunawan and Frank Schultmann

Reliability Engineering and System Safety, 2018, vol. 176, issue C, 102-112

Abstract: A large number of recent studies have addressed the redundancy evaluation of Water Distribution Networks (WDNs) from a hydraulic perspective. There already exist a few topological redundancy metrics, which address very basic structural characterizations of networks and therefore fail to realistically capture the inherent topological redundancy. To remedy this weakness, we introduce, for the first time, a two-tiered approach to evaluate the redundancy of WDNs. Tier one is supported by the cospanning tree technique which offers a novel method to measure the local redundancy of pipes. Tier two uses the results of the level one and posits the informational entropy theory as a tool to measure the global redundancy of networks. An attempt has been made to generate a new robustness index as a measure to quantify the redundancy. The proposed redundancy index can be interpreted as a measure of distance from the maximum possible redundancy. In order to demonstrate the proposed method, the paper presents two case studies, a hypothetical network and a real world WDN of an Australian town. Comparison of the presented method with conventional redundancy measures reveals the superiority of the proposed redundancy method.

Keywords: Cospanning edge betweenness; Cospanning tree; Informational entropy; Redundancy; Water distribution networks (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017311675
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:176:y:2018:i:c:p:102-112

DOI: 10.1016/j.ress.2018.04.003

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:102-112