Dynamical accelerated performance measure approach for efficient reliability-based design optimization with highly nonlinear probabilistic constraints
Behrooz Keshtegar and
Souvik Chakraborty
Reliability Engineering and System Safety, 2018, vol. 178, issue C, 69-83
Abstract:
For satisfactory performance of reliability-based design optimization (RBDO) tools, stable and efficient estimation of the nonlinear probabilistic constraints is of utter importance. Unfortunately, popular methods for reliability analysis, such as hybrid chaos control, self-adaptive chaos control and adaptive chaos control, have several drawbacks which include unstable results and slow rate of convergence. To address this issue, a dynamical accelerated chaos control (DCC) –based beta-circle search direction algorithm is proposed. In order to compute the chaos control factor within DCC, a novel merit function is also proposed in this work. The efficiency and robustness of the proposed DCC method have been illustrated with four nonlinear reliability problems and four RBDO examples. Compared to available state-of-the-art methods, the proposed approach is found to be efficient and accurate. This certifies its possible application to realistic RBDO problems.
Keywords: Reliability-based design optimization; Reliability analysis; Dynamical accelerated chaos control; Merit function (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017314370
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:178:y:2018:i:c:p:69-83
DOI: 10.1016/j.ress.2018.05.015
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().