Multivariate system reliability analysis considering highly nonlinear and dependent safety events
Mohammadkazem Sadoughi,
Meng Li and
Chao Hu
Reliability Engineering and System Safety, 2018, vol. 180, issue C, 189-200
Abstract:
Most of the existing system reliability analysis methods have focused on series and parallel systems whose components are weakly nonlinear and dependent. This paper proposes a new system reliability analysis method, named multivariate system reliability analysis (MSRA), for complex engineered systems with highly nonlinear and dependent components that are connected in series, parallel, and mixed configurations. The proposed method first employs multivariate Gaussian process (MGP) to sequentially construct a single surrogate jointly over the performance functions of all components and then performs Monte Carlo simulation on the surrogate model for system reliability analysis. The joint surrogate is updated adaptively using a novel acquisition function named multivariate probability of improvement (MPI). MGP considers the correlations between the component performance functions and provides a joint Gaussian prediction of these functions. This joint Gaussian surrogate model allows the use of MPI to achieve a dynamic trade-off between exploring the regions in the input space with high prediction uncertainty and exploring those that are close to the system limit-state function. The results of three abstract and two practical case studies show that MSRA is capable of achieving better accuracy in estimating the system reliability than the existing surrogate-based methods.
Keywords: Multivariate Gaussian process; Multivariate probability of improvement; System limit-state function; System reliability analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018302138
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:180:y:2018:i:c:p:189-200
DOI: 10.1016/j.ress.2018.07.015
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().