Distinguishing between model- and data-driven inferences for high reliability statistical predictions
Lauren Hund,
Benjamin Schroeder,
Kellin Rumsey and
Gabriel Huerta
Reliability Engineering and System Safety, 2018, vol. 180, issue C, 201-210
Abstract:
Estimating the tails of probability distributions plays a key role in complex engineering systems where the goal is characterization of low probability, high consequence events. When data are collected using physical experimentation, statistical distributional assumptions are often used to extrapolate tail behavior to assess reliability, introducing risk due to extrapolation from an unvalidated (statistical) model. Existing tools to evaluate statistical model fit, such as probability plots and goodness of fit tests, fail to communicate the risk associated with this extrapolation. In this work, we develop a new statistical model validation metric and relate this metric to engineering-driven model validation metrics. The metric measures how consistent the parametric tail estimates are with a more flexible model that makes weaker assumptions about the distribution tails. An extreme-value based generalized Pareto distribution is used for the more flexible model. Models are updated using a Bayesian inference procedure that defaults to reasonably conservative inferences when data are sparse. Properties of the estimation procedure are evaluated in statistical simulation, and the effectiveness of the proposed metrics relative to the standard-of-practice statistical metrics is illustrated using a pedagogical example related to a real, but proprietary, engineering example.
Keywords: Extreme value modeling; Model uncertainty; Margin; Risk assessment; Quantification of margins and uncertainties (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018301534
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:180:y:2018:i:c:p:201-210
DOI: 10.1016/j.ress.2018.07.017
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().