A knowledge-based prognostics framework for railway track geometry degradation
ChiachÃo, Juan,
ChiachÃo, Manuel,
Darren Prescott and
John Andrews
Reliability Engineering and System Safety, 2019, vol. 181, issue C, 127-141
Abstract:
This paper proposes a paradigm shift to the problem of infrastructure asset management modelling by focusing towards forecasting the future condition of the assets instead of using empirical modelling approaches based on historical data. The proposed prognostics methodology is general but, in this paper, it is applied to the particular problem of railway track geometry deterioration due to its important implications in the safety and the maintenance costs of the overall infrastructure. As a key contribution, a knowledge-based prognostics approach is developed by fusing on-line data for track settlement with a physics-based model for track degradation within a filtering-based prognostics algorithm. The suitability of the proposed methodology is demonstrated and discussed in a case study using published data taken from a laboratory simulation of railway track settlement under cyclic loads, carried out at the University of Nottingham (UK). The results show that the proposed methodology is able to provide accurate predictions of the remaining useful life of the system after a model training period of about 10% of the process lifespan.
Keywords: Railway track degradation; Physics-based modelling; Prognostics; Particle filtering (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201731400X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:181:y:2019:i:c:p:127-141
DOI: 10.1016/j.ress.2018.07.004
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().