Efficient method for variance-based sensitivity analysis
Xin Chen,
Molina-Cristóbal, Arturo,
Marin D. Guenov and
Atif Riaz
Reliability Engineering and System Safety, 2019, vol. 181, issue C, 97-115
Abstract:
Presented is an efficient method for variance-based sensitivity analysis. It provides a general approach to transforming a sensitivity problem into one uncertainty propagation process, so that various existing approximation techniques (for uncertainty propagation) can be applied to speed up the computation. In this paper, formulations are deduced to implement the proposed approach with one specific technique named Univariate Reduced Quadrature (URQ). This implementation was evaluated with a number of numerical test-cases. Comparison with the traditional (benchmark) Monte Carlo approach demonstrated the accuracy and efficiency of the proposed method, which performs particularly well on the linear models, and reasonably well on most non-linear models. The current limitations with regard to non-linearity are mainly due to the limitations of the URQ method used.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201731476X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:181:y:2019:i:c:p:97-115
DOI: 10.1016/j.ress.2018.06.016
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().