EconPapers    
Economics at your fingertips  
 

Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction

Xiang Li, Wei Zhang and Qian Ding

Reliability Engineering and System Safety, 2019, vol. 182, issue C, 208-218

Abstract: Accurate evaluation of machine degradation during long-time operation is of great importance. With the rapid development of modern industries, physical model is becoming less capable of describing sophisticated systems, and data-driven approaches have been widely developed. This paper proposes a novel intelligent remaining useful life (RUL) prediction method based on deep learning. The time-frequency domain information is explored for prognostics, and multi-scale feature extraction is implemented using convolutional neural networks. Experiments on a popular rolling bearing dataset prepared from the PRONOSTIA platform are carried out to show the effectiveness of the proposed method, and its superiority is demonstrated by the comparisons with other approaches. In general, high accuracy on the RUL prediction is achieved, and the proposed method is promising for industrial applications.

Keywords: Remaining useful life; Prognostics and health management; Deep learning; Multi-scale feature extraction; Rolling bearing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018308299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:182:y:2019:i:c:p:208-218

DOI: 10.1016/j.ress.2018.11.011

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:208-218