EconPapers    
Economics at your fingertips  
 

Development of statistical models for improving efficiency of emergency evacuation in areas with vulnerable population

Maxim A. Dulebenets, Olumide F. Abioye, Eren Erman Ozguven, Ren Moses, Walter R. Boot and Thobias Sando

Reliability Engineering and System Safety, 2019, vol. 182, issue C, 233-249

Abstract: Different parts of the world are characterized by frequent occurrences of natural hazards. As such, evacuation planning is an essential part of the natural hazard preparedness, especially in hazard-prone areas. Numerous research efforts have been directed towards improving the efficiency of the evacuation process. However, only a limited number of studies have specifically aimed to identify factors, influencing the driving ability of individuals under emergency evacuation and the occurrence of crashes along the evacuation routes. Furthermore, previous research efforts have focused on a relatively narrow range of factors (primarily driver and traffic flow characteristics). This study aims to fill the existing gap in the state-of-the-art by investigating the effects of a wide range of different factors (including driver characteristics, evacuation route characteristics, driving conditions, and traffic characteristics) on the major driving performance indicators under emergency evacuation. The considered driving performance indicators include travel time, lane deviation, crash occurrence, collision speed, average acceleration pedal pressure, and average braking pedal pressure. A set of statistical models is developed to identify the most significant factors that influence the major driving performance indicators. These models are tested using the data collected from the driving simulator and participants with various socio-demographic characteristics. The results indicate that age, gender, visual disorders, number of lanes, and space headway may substantially impact the driving ability of individuals throughout the emergency evacuation process. Findings from this research can be incorporated within the existing transportation planning models to facilitate the natural hazard preparedness, ensure safety of evacuees, including vulnerable populations, and reduce or even prevent the occurrence of crashes along the evacuation routes.

Keywords: Emergency evacuation; Evacuation routes; Driving ability; Driver characteristics; Vulnerable population; Natural hazard preparedness (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201830437X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:182:y:2019:i:c:p:233-249

DOI: 10.1016/j.ress.2018.09.021

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:233-249