EconPapers    
Economics at your fingertips  
 

An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression

M. Steiner, J.-M. Bourinet and T. Lahmer

Reliability Engineering and System Safety, 2019, vol. 183, issue C, 323-340

Abstract: In the field of engineering, surrogate models are commonly used for approximating the behavior of a physical phenomenon in order to reduce the computational costs. Generally, a surrogate model is created based on a set of training data, where a typical method for the statistical design is the Latin hypercube sampling (LHS). Even though a space-filling distribution of the training data is reached, the sampling process takes no information on the underlying behavior of the physical phenomenon into account and new data cannot be sampled in the same distribution if the approximation quality is not sufficient. Therefore, in this study we present a novel adaptive sampling method based on a specific surrogate model, the least-squares support vector regression. The adaptive sampling method generates training data based on the uncertainty in local prognosis capabilities of the surrogate model - areas of higher uncertainty require more sample data. The approach offers a cost efficient calculation due to the properties of the least-squares support vector regression. The opportunities of the adaptive sampling method are proven in comparison with the LHS on different analytical examples. Furthermore, the adaptive sampling method is applied to the calculation of global sensitivity values according to Sobol, where it shows faster convergence than the LHS method. With the applications in this paper it is shown that the presented adaptive sampling method improves the estimation of global sensitivity values, hence reducing the overall computational costs visibly.

Keywords: Surrogate models; Least-squares support vector regression; Adaptive sampling method; Global sensitivity analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017311808
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:183:y:2019:i:c:p:323-340

DOI: 10.1016/j.ress.2018.11.015

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:323-340